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PREFACE 

Educational researchers are well aware of the complexity of learning and 
instructional processes. Over the years, they have looked for different ways to cope 
with this complexity. One of the coping strategies frequently used during the last 
century has been an analytical one. By focusing on particular bits and pieces, by 
thoughtfully reducing complexity, researchers have revealed the layered nature of 
learning and instructional processes. Unfortunately, this analytical approach has 
also often resulted in simplistic conclusions, simplistic interpretations of research 
and in simplistic solutions for complex instructional problems.  
 In order to more fully acknowledge the complexity of learning and instruction, 
various educational researchers in the last century have also attempted to study 
learning and instructional phenomena in their full complexity. While these holistic 
efforts have resulted in sincere accounts of how these phenomena can be dealt 
with, they have not in as much resulted in equally significant theoretical accounts 
of these phenomena. 
 Acknowledging the relevance of both coping strategies, this book addresses 
what is seen as one of the major issues in the further development of learning and 
instructional research, the issue of complexity of learning environments. It presents 
an overview of the current research done by researchers interested in the question 
on how to design powerful learning environments, and how to effectively integrate 
computers in instruction, without reducing this complexity. The different 
contributions all fit well in the overall theme of this book ‘Confronting complexity, 
avoiding simplicity’. 
 All contributions attempt to empirically investigate this complexity by 
addressing design issues, or by identifying important variables influencing 
learning. One of the main research themes in these different contributions is how 
learners can be encouraged to use the different affordances offered to them, how 
learners exploit learning opportunities. Different contributions address the problem 
that learners do not or not optimally use support, or do not take the learning 
opportunities offered. Learners seem not to comply to the intentions of the 
designers, or those of the learning environment.  
 An additional theme that is addressed by different authors in this book is the 
aspect of visualization: visualization of aspects of the learning environments on the 
one hand (e.g., the application of multimedia principles), and visualization of 
communication aspects and learner’s activities, often within collaborative learning 
environments, on the other hand.  
 Overall, the different authors in this book try to confront the complexity of 
learning environments, without reducing it to naïve simplicity. This is reflected in 
the variety of research questions addressed, and in the variety of methodologies 
used to answer these research questions.  
 This book constitutes the proceedings of the joint meeting of the special interest 
groups ‘Instructional design’ and ‘Learning and instruction with computers’ of the 
European Association for Research on Learning and Instruction.  
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 For the second time the two special interest groups join their forces to exchange 
research issues addressed in the two groups. This is also reflected in the 
contributions of the four invited speakers, who either raise instructional design 
issues, or rather focus on the integration of technology in learning environments. 
The papers included in this proceedings, all went through a double blind peer 
review process. Each paper was read by two reviewers independently. The 
different nationalities of the contributors indicate that the issue of complexity is an 
issue that is fascinating to researchers all over the world.  
 For the special interest group ‘Instructional design’, this special interest meeting 
is organized for the second time in Leuven. While the idea to launch a special 
interest group on instructional design was reached at the EARLI-conference in 
1991 in Madrid, the first special interest meeting was only held in 1994, with Joost 
Lowyck and Franz Schott as first SIG-coordinators. For the special interest group 
Instructional design it is already the 7th meeting. This 7th meeting of this group has 
a special meaning, since it is also the moment on which Joost Lowyck, one of the 
first coordinators is retiring. Joost Lowyck has been one of the researchers who 
always attempted to avoid simplicity and address complexity in his research. The 
theme of this joint meeting was selected as a tribute to his academic contributions. 
 Of course this second joint interest meeting and this book would not have been 
possible without the help of a large number of sponsors and people. As such, 
together with the editors of this book, the organizers of the second special interest 
meeting and the coordinators of the two EARLI SIG’s involved want to explicitly 
express their gratitude to the following bodies for sponsoring this event: the 
European Association for Research on Learning and Instruction (EARLI); the 
National Science Foundation-Flanders; Groep T-hogeschool; the central 
educational support unit of the Katholieke Universiteit Leuven (DUO/ICTO); the 
academic institute for teacher training of the Katholieke Universiteit Leuven 
(AVL), and the scientific research community on ‘Designing, developing and 
evaluating powerful learning environments’ sponsored by the National Science 
Foundation- Flanders. 
 While money is important, invaluable has been the intellectual and practical 
support of numerous individuals as reviewer, and/or as a members of the scientific 
or local organizing committee: Charoula Angeli, University of Cyprus (Cyprus); 
Alessandro Antonietti, Catholic University of the Sacred Heart (Italy); Saskia 
Brand-Gruwel, Open University (The Netherlands); Rainer Bromme, University of 
Münster (Germany); Stefano Cacciamani, University of Valle d’Aosta (Italy); 
Amaury Daele, University of Namur (Belgium); Markus Deimann, Floriday State 
University (USA); Karine Dens, Katholieke Universiteit Leuven (Belgium); Stijn 
Dhert, Groep T (Belgium); Erika de Vries, University of Grenoble (France); Peter 
Gerjets, Knowledge Media Research Center (Germany); Begoña Gros, University 
of Barcelona (Spain); Jasmina Hasanbegovic, University of St. Gallen 
(Switzerland); Richard Joiner, University of Bath (United Kingdom); Anthony 
Jones, University of Melbourne (Australia); Liesbeth Kester, Open University (The 
Netherlands); Paul Kirschner, Open University (The Netherlands); Beatrice 
Ligorio, University of Bari (Italy); Joost Lowyck, Katholieke Universiteit Leuven 
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(Belgium); Mattias Nückles, University of Freiburg (Germany); Kai Pata, 
University of Tartu (Estonia); Yves Persoon, Groep T (Belgium); Neil H. 
Schwartz, California State University (USA); Paola Spadaro, University of Bari 
(Italy); Jan-Willem Strijbos, University of Leiden (The Netherlands); Detlef 
Urhahne, University of Muenchen (Germany); Martin Valcke, Universiteit Gent 
(Belgium); Henny van der Meijden, Radboud Universiteit Nijmegen (The 
Netherlands); Peter Van Petegem, Universiteit Antwerpen (Belgium); Bartel 
Wilms, Katholieke Universiteit Leuven (Belgium); Virginie Zampa, University of 
Poitiers (France), and Joerg Zumbach, University of Heidelberg (Germany) 
 
We hope you enjoy the contributions in this book and look forward to your 
comments 
 
Geraldine Clarebout and Jan Elen 
Leuven, May 10, 2006 
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RICHARD E. CLARK 

NOT KNOWING WHAT WE DON'T KNOW: 
REFRAMING THE IMPORTANCE OF AUTOMATED 

KNOWLEDGE FOR EDUCATIONAL RESEARCHi

INTRODUCTION 

All theory is against the freedom of the will; all experience is for it. 
Samuel Johnson (1791), Boswell’s Life of Johnson 

Scientific progress sometimes comes not from new methods or technologies but 
from new ways of framing old problems. The purpose of this paper is to suggest 
that we reframe the importance of evidence gathered in the past two centuries 
about automated, unconscious cognitive processes (also called procedural, implicit 
and tacit knowledge and strategies).  The suggestion is based on the assumption 
that we do not yet fully appreciate the impact of automated processes on complex 
learning, motivation and problem solving. This situation may have caused 
important gaps in the design of instructional research and practice and in 
instructional design theories and models.  
 We seem tempted to view evidence about automated mental processes as an odd 
and unimportant sideline in education and psychology. The avoidance of evidence 
that unconscious processes control much of our learning and performance have led 
us to adopt questionable assumptions to support our instructional research and 
design theories as well as the measures we use for assessing the impact of 
instruction. The goal of this paper is to encourage a refocusing of our future 
research and development efforts to fully integrate what we know about automated 
knowledge into both research and practice. 

AUTOMATED COGNITIVE PROCESSES AND SELF-REGULATION 

For at least the past two centuries philosophers and psychologists have commented 
on the existence of automated and unconscious mental processes. From Samuel 
Johnson’s 18th century contrarian views on the exercise of free will to the more 
recent evidence on controlled and automated processes presented by researchers 
such as Schneider and Shiffrin (1977) and Daniel Wegner (2002), evidence about 
the ironic impact of automated processes has been constant but largely ignored in 
education. Estimates suggest that as adults are consciously aware of as little as 10 
percent of our cognitive operations and automated procedural knowledge and so as 
much as 90 percent of our learning and problem solving may be automated and 
unconscious (Bargh, 1999, Bargh & Chartrand, 1999).  In spite of this, most of our 
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instructional research and indeed most of educational “science” emphasizes the 
learning of conscious, declarative knowledge and more or less ignores automated 
unconscious knowledge (Sun, Sluzarz, & Terry., 2005). Is it possible that we have 
developed an educational science that emphasizes only 10 percent of our self 
regulatory and learning processes?   

Automated Routines for Automating Knowledge 

We appear to have innate, unconscious routines for automating all behavior that is 
perceived as successful and is repeated over time (cf. Kunst-Wilson & Zajonc, 
1980).  Perhaps we have ignored automated knowledge because we are not at all 
aware of the automatization process. In addition, neuroscience evidence indicates 
that the expression of automated behavior appears to be pleasurable (Helmuth, 
2001). Brain imaging has revealed that behavioral addiction may largely be due to 
non-conscious memories of environmental conditions triggering automated 
behaviors.  Behavioral addictions appear to use the same neural reward process 
(albeit to a lesser degree) activated in drug addictions.  Furthermore, in a recent 
review, Zajonc (2001) cogently argues that emotion-laden preferences for routine 
may be conditioned via benign and repeated exposure to the environmental 
conditions that elicit automated behavior.  Moreover, these preferences may be 
stronger if repeated exposure occurs outside of conscious awareness!  Thus, not 
only may automated behavior be addictive and its formation automated, but our 
expression of automated knowledge may be pleasurable as well. Investigation of 
this process in learning is the subject of John Anderson’s (1995) view of cognitive 
architecture and processes.  His ACT-R theory describes a compelling, evidence-
based version of the stages and events in the process by which learning objectives 
engage cognitive automaticity routines to gradually transform conscious 
declarative knowledge into automated procedural routines over time.  
 Perhaps it is too difficult for us to accept  evidence that not only are we unaware 
of important cognitive processes but that some of those unconscious processes 
cause us to wrongly believe that we exercise effortful, effective self control.  
Evidence against our deliberate self control comes from diverse areas such as 
research on stereotypes, the development of our beliefs about the influence of our 
willful decisions, the accuracy of our memory for past expectations about future 
events; the processes that support complex learning and problem solving as well as 
the development of advanced professional expertise.   

Ironic Cognitive Processes Cause Attribution and Performance Errors 

Wegner (2002) has provided very compelling evidence that while most of us 
believe that we exercise conscious, deliberate control over our own decisions and 
actions, this belief is largely an illusion. Wegner (2002) argues persuasively that 
our behavior is mostly caused by a range of both physical and automated mental 
mechanisms that are largely automated and only occasionally influenced by will 
and intention. Yet, he argues, our attributions for our behavior will either focus 
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exclusively on conscious will as the primary agent of our behavior or attribute 
causality to external events. Wegner (1997) also presents evidence for an 
automated “ironic” monitoring and control sub-system for cognition that attempts 
to help us avoid mistakes but often produces errors.  He gives evidence that when 
cognitive load exceeds working memory capacity the condition produces an 
unconscious, uninterruptible, cognitive process that “...searches for mental content 
signaling a failure to create the intended state of mind” and introduces “...different, 
unwelcome and unintended behavior” (p. 148). This phenomenon may help explain 
a wide range of human errors from “slips of the tongue” in stressful speaking 
situations to the documented inability most students experience when attempting to 
overcome previously learned and automated “misconceptions” when learning 
science principles or a new language.  

Teachers as Experts Who May Not Be Able to Describe What They Know 

Even more compelling for education is evidence that automated knowledge may 
prevent teachers and other experts from accurately describing to students the very 
effective analytical strategies they apply and the decisions they make when they 
solve problems in their area of expertise. Chao and Salvendy (1994) used four 
different strategies to study the explanations expert computer programmers gave 
trainees when describing three highly structured tasks such as how to diagnose and 
solve bugs in complex computer programs. They found that even top experts who 
were motivated to share their expertise described an average of only 41 percent of 
the important strategies they used often. When tasks were fairly simple and 
involved fewer decisions, the expert descriptions were 50 percent accurate. 
However, for more complex tasks requiring many decisions, their accuracy slipped 
to only 21 percent. If two or more experts were consulted about the same task, the 
accuracy of the reports increased by an average of only about 12 percent with each 
new expert. Feldon (2004) found a 70 percent gap in the explanations about the 
design of memory experiments given by psychology and education professors who 
taught research design. Feldon asked his subjects to use a computer program that 
permitted them to design memory experiments and then are presented with the data 
their experiment produced. He asked them to explain how they made decisions and 
compared their explanations with the decisions they actually made as recorded by 
the program. Is it possible that the most expert teachers unintentionally withhold 70 
percent of their expertise from their students while believing that they have given 
100 percent? Is this unintentional withholding a reasonable explanation for the 
evidence provided by Hinds (1999) that teachers and other experts significantly 
under-estimate the difficulty level novices experience when trying to learn to 
perform complex tasks   

Explicit and Implicit Beliefs and Attitudes About Ourselves and Others 

Another compelling example of this phenomenon can be found in research on 
stereotypes. Most of us believe that we are fair and impartial when dealing with 
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others and yet that belief seems to conflict with the implicit attitudes reflected in 
the biased decisions subjects make about other when they are stressed and/or 
cognitively overloaded in experiments (Devine, 1989; Greenwald & Banaji, 1995). 
Mental operations that were once thought to require conscious, effortful 
processing, such as the reduction of “cognitive dissonance” when our values or 
beliefs conflict, now appear to be largely automated and effortless. Lieberman. 
Oschner, Gilbert, and Schacter (2001) present evidence from a series of studies that 
attempts to exert conscious control over mental conflict reduction does not change 
the outcome for most subjects but does make the eventual resolution of the conflict 
much less efficient. In their study, amnesiacs who could not remember that they 
had experienced a conflict about choices were much more effective and efficient in 
resolving the conflict than university students who reached similar conclusions 
more slowly - apparently because their conscious reasoning interfered with an 
automated cognitive process.   

Hindsight Bias Revises our Memory for Expectations 

If we accept the evidence about the “hindsight bias” phenomenon studied by 
Hoffrage and his colleagues at the Max Plank Institute in Berlin (Hoffrage et al., 
2000), even our memory for our past actions and beliefs are not free of automated 
distortion.  It appears that in most instances we remember having made an accurate 
prediction when in fact our earlier expectations were far from accurate. They 
document many cases in which we unconsciously “reconstruct” a “memory” for 
our previous expectations and predictions about the outcome of a future event only 
after the event has occurred.  

EXPLANATIONS FOR THE BENEFITS AND COSTS OF  
AUTOMATED COGNITIVE PROCESSES 

Cognitive psychologists concerned with learning and problem solving (e.g. 
Anderson, 1995; Anderson & Lebiere, 1998; Newell, 1990; Schneider & Chein, 
2003; Sweller, 2006) have suggested that we need automated, “unconscious” 
knowledge to circumvent the processing limits on consciousness (working 
memory). Past estimates (Miller, 1955) placed the information capacity of 
conscious working memory at approximately seven (plus or minus two) chunks of 
related declarative knowledge. Yet that number has been cut in half recently as a 
result of an extensive review by Cowan (2001) whose estimate of three (plus or 
minus one) chunk limit is now generally accepted. Sweller (2006) speculates that 
the evolutionary purpose of severe limits on how much information we can 
consciously consider is to protect us from rapid changes in our knowledge. He 
suggests that if we were able to learn a great deal of untested and/or faulty new 
routines quickly we might learn and express self-destructive behavior. Automated 
knowledge is difficult to learn and apparently cannot be automated until it is 
perceived as useful and successful with repetition over time.  
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 John Anderson’s ACT-R (e.g., Anderson & Lebiere, 1998) theory describes the 
automatization process in specific, evidence-based detail. Anderson’s learning 
theory has provided the key components of some of the most effective of our 
newest and most effective instructional design theories for learning complex 
knowledge (c.f. van Merriënboer, 1997; Merrill, 2002a, 2002b). The presumed 
benefits of automated knowledge in the form of analytical and decision strategies 
and procedures is that it allows us to circumvent limits on conscious thinking and 
express tested and effective learning and problem solving routines while leaving 
working memory space to process the novel components of tasks.  

STRATEGIES FOR RESEARCH ON AUTOMATED COGNITIVE PROCESSES IN 
LEARNING AND INSTRUCTION 

The primary goal of this paper is to suggest that we need to encourage a more 
intense and focused dialogue about the evidence for automated knowledge and its 
potential impact on our understanding of the processes that surround learning and 
instruction. A partial list of the questions and issues that, if developed, might 
provide considerable benefit follows. The reader will no doubt think of many other 
issues that deserve attention. 

1. Examine problems encountered in currently popular research topics that 
might be solved by including hypotheses related to the automatization of 
cognitive processes and/or automated procedural knowledge. 

One positive consequence of automated knowledge is that many areas of 
educational research may be ripe for reconsideration. One way to describe 
Sweller’s (2006) cognitive load theory is that it describes the conditions under 
which automated processes protect working memory. Cognitive load theory has 
already made a highly significant contribution to research on the design of multi-
media instruction and other forms of instructional presentations (for example, 
Mayer, 2001).  

Self-Regulation 

Other areas that might benefit from a consideration of automated processes 
include, for example, research on self-regulation of learning and motivation (e.g. 
Baumeister & Vohs, 2004). Studies that attempt to teach learners to control self-
regulatory strategies in short treatments might be one of the most likely causes of 
evidence about failures in attempts to deliberately control cognitive processing 
(Molden & Dweck, 2006; Efklides, 2005). Is it possible that self-regulatory 
strategies have to be taught as procedures and practiced over time under the 
conditions where they must be expressed until they become automated? Is it also 
possible that the most effective self regulatory strategies will be very context or 
condition specific?  
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Misconceptions 

The role of misconceptions in learning (e.g., Kendeou & van den Broek, 2005) 
may also need to be reframed since misconceptions may be automated and very 
difficult to either change or replace. Is it possible that the reason this area is 
receiving less attention in recent years is because studies that attempted to modify 
misconceptions have largely failed (e.g., Vosniadou, 1994)? Is it also possible that 
studies focused on ways to change automated knowledge might breathe new life 
into the study of misconceptions in learning science and other topics (e.g., 
Vosniadou, 2002)? While this literature has focused primarily on science learning, 
is it also possible that misconceptions might inhibit learning in nearly all areas 
where prior experience and expectations conflict with new learning? 

Unguided Inquiry-based and Constructivist Learning 

Studies on unguided constructivist and inquiry-based learning are problematical 
since only learners with advanced prior subject-matter knowledge appear to thrive 
in unguided learning settings (Mayer, 2004). Learners, who lack adequate 
automated learning strategies for specific domains, may need instructionally based 
guidance to learn and instruction in problem solving or learning strategies might 
need to be implemented in the same way that other cognitive strategies are taught – 
and automated (Kirschner, Sweller, & Clark, 2006). Merrill (2002a, b) has 
reviewed current, popular instructional design theories and has recommended five 
types of guidance that appear to underlie the most effective systems. A critical 
component of the most effective guidance seems to be showing learners how to 
decide and act to accomplish authentic tasks and problems, then providing 
increasingly challenging part and whole-task practice and corrective feedback until 
learning occurs. Similarly, previously automated skills are the most likely reason 
why learners with high prior knowledge do not require procedural instruction in the 
form of demonstrations or worked examples but those with intermediate or lower 
prior knowledge find it difficult or impossible to succeed without them (e.g., 
Kalyuga, Chandler, Sweller, & Clark, 2001).   

Task Analysis, Self Report and Think Aloud Protocols 

Studies that make heavy use of self-report strategies for capturing the knowledge 
of subject-matter experts through task analysis and “think aloud” protocols (e.g., 
Davison, Vogel, & Coffman. 1997) are most likely flawed because once cognitive 
processes are automated they are no longer available for conscious monitoring and 
so cannot be accurately and completely described during a task analysis or think 
aloud protocol (Feldon, in press; Wheatley & Wegner, 2001). The more promising 
Cognitive Task Analysis strategy (e.g., Clark & Estes, 1999; Schraagen, Chipman, 
& Shalin, 2000) seems more likely to capture the cognitive operations that experts 
have automated and therefore find difficult to describe completely and accurately.  
Cognitive task analysis is one of the important and underappreciated features of 
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instructional design systems that specialize in complex knowledge (e.g., van 
Merriënboer, 1997).   
 It may also be necessary to rethink the measures we use for assessment 
including our reliance on the immediate post testing of declarative knowledge in 
instructional research and the use of self-report measures to assess motivational 
processes and outcomes (e.g., Stone et al., 2000).  
 For example, using secondary (speed of response to random cues during 
problem solving) measures of distraction and automaticity of knowledge, both 
Gimino (2000) and Flad (2002) found preliminary evidence that self report 
measures of how much mental effort learners invested to achieve learning goals 
may be flawed because of automated defaults that occur when working memory is 
overloaded (Clark, 1999). In addition, if the gradual automation of procedural 
knowledge results in increased speed and automaticity is it possible that two 
learners with the same score on an application exercise or learning test where time 
to respond is not controlled or measured might actually have very different 
amounts, stages and types of learning? Is it possible that a learner who has attained 
very high levels of expertise may not be able to describe the cognitive strategy they 
used to solve problems as accurately as a less expert student?  In our laboratory we 
have examined the use of “think aloud” instruction used by professors of surgery to 
teach new surgeons. We divided one year’s class of surgical trainees into two 
groups and gave one group cognitive task analysis (CTA) worked example 
descriptions of a common surgical procedure while the control group received 
“think aloud” demonstrations from top surgery professors. We monitored the 
surgical trainees as they performed the procedure in the hospital for the next year 
(Velmahos et al., 2004). The results indicated that the CTA group made 
significantly fewer mistakes than the control group who made some very serious 
mistakes (but the number and type were consistent with “think aloud” taught 
surgeons in previous classes. Most interesting was the finding that both groups 
performed equally well on the part of the procedure they could visually inspect but 
the experimental group excelled in areas that involved critical decision making. We 
can observe and model what we can perceive but we cannot observe the making of 
decisions.  

2.  Conduct studies that examine methods of circumventing, changing and/or 
replacing automated knowledge.   

The costs and negative impact of automated knowledge are due to its 
inaccessibility and the many ways that it silently interferes with our learning, some 
of which are described in the introduction to this paper. One other important 
difficulty is that automated knowledge is extremely difficult and perhaps 
impossible to modify when it is no longer functional and may be interfering with 
performance (Sasaki, 2004). While automated routines are difficult to learn and 
require many hours of application to speed and automate (Anderson, 1995), once 
automated they appear to be very difficult or impossible to modify, eliminate or 
“unlearn”.   



CLARK 

10 

 Sasaki (2004) has reported on the efforts we have invested in my center over the 
past five years to monitor research in this area. He describes three strategies that 
appear to have been tested: 1) over learning new knowledge that replaces existing 
knowledge by extending practice so that new knowledge is stronger (e.g., Zajonc, 
2001); 2) goal substitution or circumventing the expression of maladaptive 
knowledge or processes by strengthening intentions to pause and implement new 
learning so that environmental conditions lead to the expression of new routines 
(e.g. Gollwitzer, 1999), and 3) activating an automated process to modify or 
replace maladaptive, activating automatic processes such as those described by 
Lieberman et al., (2001). We have found that the greatest interest and most 
systematic research on changing automated routines can be found among our 
colleagues in psychotherapy and counseling psychology (e.g., Bargh & Chartrand, 
1999). It appears to be likely that complex learning most often requires a change in 
previously learned routines and thus learning difficulties might be due in part to the 
change-resistant qualities of automated prior knowledge and processes. Given the 
evidence about the reward potential of automated cognitive processes because of 
their links to addictive neural pathways and reward centers (Helmuth, 2001) some 
researchers (e.g. Prochaska DiClemente, & Norcross, 1992) are exploring the use 
of powerful psychological interventions used in the treatment of drug addictions to 
change many individual and organizational behaviors.     

3. Focus research on  instructional methods that most effectively teach 
automated knowledge and instructional design models that incorporate 
this research. 

Most of our current instructional design models and nearly all instructional 
research is narrowly focused on the learning of conscious, declarative knowledge. 
This generalization extends to studies of social learning and motivational process 
as well as issues connected to school and classroom culture. John Anderson’s 
systematic research on learning provides strong evidence that declarative 
knowledge, when used to accomplish tasks and solve problems gradually 
transforms into automated procedural knowledge (Anderson, 1995; Anderson & 
Lebiere, 1998). His research, extending over a quarter century, makes a very 
compelling case that all effective applied knowledge must be proceduralized and 
automated in order to circumvent the limits on working memory. While other 
researchers have developed slightly different views of this process (cf. Sun et al., 
2005), most reach a similar conclusion about the importance of the automaticity 
process. Thus we must encourage more research that attempts to improve our 
support for automatization processes during learning and problems solving.  Since 
declarative and procedural knowledge appear to interact constantly to support 
performance on all complex tasks, we must also examine the interaction between 
these two types of knowledge. The best current example of this approach can be 
found in the exceptional instructional design theory of van Merriënboer and 
colleagues (Paas, Renkl, & Sweller, 2003; van Merriënboer, 1997; van 
Merriënboer, Kirschner, & Kester, 2003). Van Merriënboer 4C/ID model is solidly 
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NOTES 

based on Anderson’s ACT-R theory and related studies. The design activities that 
flow from his model support the learning of both declarative and procedural 
knowledge. While van Merriënboer design model has been primarily field tested 
by applying it to training in large government organizations, it would be very 
interesting to develop a version of the approach for application on a large scale in 
formal primary, secondary and post secondary educational settings.  
 A misconception that has plagued the development of advanced instructional 
design theories and models is the assumption that every context or setting requires 
a different design model. This belief has resulted in a huge variety of models 
whose differences are not readily apparent (Merrill, 2002a, b). Clark and Estes 
(1999, 2000) suggested an alternative that might help us reduce redundancy and 
focus our development on a few different models.  Their suggestion is that we 
develop two stage design models. The first stage of the models would describe a 
research-based “generic” approach to designing all instruction for any type of 
learning task and the second stage specified how the design would be ‘translated’ 
for the culture, expectations and delivery media found in specific educational 
settings where the design would be used. The 4C/ID model (and similar complex 
knowledge design models) could be thought of as first stage models that would 
require a translation plan for implementing them in different cultural settings. 
Clark and Estes (2002) suggest an approach to cultural translations.    
 It would also be helpful if we provided greater support for instructional research 
that extends beyond a 30-minute segment of learning in order to better understand 
the mechanisms that influence the gradual automatization of knowledge and the 
instructional methods that will provide effective external support for learning over 
time. We might also benefit from improvements in the technology available to 
support the measurement of various stages in the development of both declarative 
and procedural knowledge including both dual-task (e.g. Gimino, 2000; Flad, 
2002) and neurological (Feldon, 2004) measures.  

CONCLUSION 

Reframing the importance of automated knowledge may help us solve some 
persistent and difficult problems in a number of research areas, including 
instructional design theories and models. If we are successful at integrating 
automated processes into our instructional theories, research and practice, we may 
solve many of our most difficult and long-standing teaching and learning problems. 
If we delay, we may find that our prominent role in educational research and 
development is gradually replaced by newer neuroscience and computational or 
connectionist learning and performance theories that focus on automated routines.  

i The ideas presented in this paper were developed over time in collaboration with a number of 
colleagues including Sean Early, David Feldon, Julie Flad, Amy Gimino, Fredric Maupin, Hiro Sasaki, 
and Kenneth Yates.  Requests for copies should be sent to clark@usc.edu
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J. MIKE SPECTOR 

FROM LEARNING TO INSTRUCTION: ADVENTURES 
AND ADVANCES IN INSTRUCTIONAL DESIGN 

INTRODUCTION 

The practice of planning and implementing instruction has experienced many 
transformations over the years, many of which are associated with advances in 
cognitive psychology and with new technologies available for learning and 
instruction. Nonetheless, no single model or theory of instructional design has been 
widely embraced by the instructional design community, and there are relatively 
few empirically established principles to guide the design of effective instruction. 
While these two claims may be challenged by some, the discussion will proceed as 
if they are not controversial. Basic learning principles and promising technologies 
that seem to have implications for instructional design practice will be reviewed. A 
key issue in determining the efficacy of proposed applications of learning 
principles to design practice will be examined – namely, how to determine progress 
of learning in complex domains and associate changes in learning and performance 
with specific aspects of instructional interventions. A promising approach to this 
central challenge that makes use of dynamic problem conceptualizations will be 
presented, and problematic aspects of this approach will be examined and 
discussed. 
 In the Preface to Impact of Research on Education: Some Case Studies, Patrick 
Suppes (1978) said “all of us on occasion probably feel that there is little hope that 
research, given the small national effort devoted to it, will seriously affect practice” 
(p. xiii). In spite of much research on learning and instruction, there is still much 
that we do not understand and much more that could be done to improve learning 
and instruction based on what we do understand. Meanwhile, cognitive psychology 
moves on and technologies that are used to support learning and instruction 
change. In 1972, in his keynote address to the Association of Computing 
Machinery, Edgars Dijkstra said that “the electronic industry has not solved a 
single problem, it has only created them, it has created the problem of using its 
products” (p. 861).  
 In spite of so much enthusiasm about information and communications 
technologies, there is the fact these technologies change frequently and introduce 
the problem of learning to use them effectively – this is particularly a challenge in 
educational contexts (Spector, 2000). The changing nature of technology and the 
associated challenges for learning and instruction are too numerous to mention 
here. However, the fact that an important educational resource, the Education 
Resources Information Center (ERIC) Clearinghouse on Information and 
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Technology, was closed, along with all 16 ERIC clearinghouses and 10 adjunct 
clearinghouses, represents the impact of changes in technology. These 
clearinghouses had been serving various educational constituencies since 1966 and 
had attracted large groups of users all over the world, including researchers, 
teachers, students, librarians, media technologists, and administrators. ERIC 
continues but without those clearinghouses. Perhaps the service and support is as 
good as it had been – many do not think so since much less is now available. 
Regardless, those who were used to the resources made available through those 
clearinghouses have had to adjust what they do. Technology changes.  
 Technology changes what people do. More importantly, technology changes 
what people can do. People can teach and learn with technology (see, for example, 
Jonassen, 2006; Lowyck & Elen, 2004; Spector & Anderson, 2000). New 
technologies provide new opportunities to improve learning and instruction. 
However, in spite of significant investments in research and technology, education 
has not changed all that much. If one judges educational improvements by their 
impact on society, then one can see, what led to the negative view about 
educational research to which Suppes (1978) referred. I am reminded of the 
opening words in a well known Biblical text which can be loosely translated as 
follows: In the beginning there were chaos and confusion. Before modern research 
on learning and instruction, there were, perhaps, chaotic and confused approaches 
to teaching, with various teachers using different strategies and resources and 
aiming to achieve quite different things. One might conclude that not much has 
changed since that inauspicious beginning. What have ensued might be called 
adventures although some would like to claim them as advances. I am not 
convinced.  

RESEARCH ON LEARNING AND INSTRUCTION 

What has been established by learning research in the last 50 years or so? 
Cognitive psychology has established much about memory and its role in learning. 
There are limitations to what individuals can hold in short term memory that do not 
seem to vary significantly with age, gender, experience or other individual 
differences (Miller, 1956). The cognitive architecture developed by Anderson and 
colleagues (2004) is widely accepted and based on multiple types of 
representations in memory – textual and visual, primarily. Paivio (1986) and others 
argue that multiple perceptual cues can facilitate storing and retrieving specific 
items from memory. Cognitive psychologists have contributed much more in terms 
of our understanding about learning than these few items (see, for example, 
Kintsch, 1993; Polson, 1993). 
 It is clear that learning implies that an individual has changed in some way. 
Changes may involve abilities, attitudes, behaviors, beliefs, mental models, skills 
or any combination of these. Typically, observing changes, and thereby 
establishing that learning has [or has not] occurred, involves identifying relevant 
response patterns involving these abilities, attitudes, behaviors, beliefs, and so on. 
Many things make it difficult to determine that learning has occurred or why 
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learning did or did not occur as expected. First and foremost, there is the fact that 
humans are naturally engaged in learning most of the time. Much of what we learn 
occurs incidentally or accidentally or unintentionally. In order to conduct research 
on learning, we typically focus on intentional learning that occurs in somewhat 
structured settings (such as schools) in which there is a goal or aim or objective 
that can be identified and clarified or negotiated and against which progress of 
learning can be assessed. 
 Cognitive researchers readily admit that many non-cognitive aspects influence 
learning, including such affective factors as motivation and prejudice. Motivation 
plays an especially significant role in the development of expertise (Ericsson, 
2001). Social and incidental interactions with others affect how well one learns and 
performs (Moreno, Mayer, Spires, & Lester, 2001; Salas & Fiore, 2004).  
Many of the findings pertaining to research on learning are summarized in 
Bransford, Brown, and Cocking (2000). Among these findings are the following: 

• Students have preconceptions about how things work, and these 
preconceptions (often misconceptions) need to be taken into account 
in learning activities. 

• The development of competence requires foundational knowledge, a 
conceptual framework, and the ability to organize and retrieve 
knowledge. 

• Metacognitive approaches can facilitate learning and improve 
performance. 

 These findings are consistent with and reinforced by model-facilitated learning 
(Milrad, Spector & Davidsen, 2002), cognitive apprentice (Collins, Brown, & 
Newman, 1989), model-centered learning (Seel, 2003) and other such instructional 
design approaches.  
 Lowyck and colleagues (Lowyck & Elen, 2004; Lowyck, Pöysä, & van 
Merriënboer, 2003) also provide a compact and meaningful summary of the 
findings of learning research that have implications for instructional design and the 
effective use of technology. Their findings pertaining to goal-directed learning 
include the following: 

• Learning is an active process that typically involves mental effort. 
• Learners interpret their experiences and construct internal 

representations. 
• Learning is cumulative; new knowledge is most useful when it is 

integrated with prior knowledge. 
• Effective learning is self-regulated. 
• Learning occurs in contexts that include both physical and socio-

cultural aspects. 
 The mental effort that is associated with intentional learning has been explored 
by cognitive load researchers (Paas, Renkl & Sweller, 2003; Sweller, 2003), who 
distinguish intrinsic cognitive load (largely due to factors in the problem itself), 
extraneous cognitive load (largely due to incidental aspects in the presentation of 
the problem or in the environment in which it is presented), and germane cognitive 
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load (generally beneficial to learning and dependent on individual characteristics 
and circumstances). 
 Merrill (2002) develops a set of first principles for the design of instruction 
based on an examination of the leading success stories in educational research and 
instructional technology, namely: Star legacy (Schwartz, Lin, Brophy, & 
Bransford, 1999), McCarthy’s (1996) 4-Mat, Andre’s (1986) instructional 
episodes, Gardner’s (1999) multiple intelligences, Nelson’s (1999) collaborative 
problem solving, Jonassen’s (1999) constructivist approaches (1999), and Schank’s  
learning by doing (Schank, Berman, & Macperson, 1999). These approaches and 
their associated learning systems, along with those mentioned earlier and others 
which could easily be named, represent the great adventures in instructional design 
research and technology. Merrill’s (2002) principles include adopting a problem-
centered instructional approach, activating relevant knowledge structures and 
expectations in learners, demonstrating how to solve problems, providing problem 
solving practice and opportunities for applying knowledge, and integrating what 
has been learned into meaningful activities. 
 Spector (2001) provided a synthesis of this general body of educational research 
as follows: 

• Learning is fundamentally about change – change in attitudes, 
behavior, beliefs, capabilities, mental models, skills, or a combination 
of these. 

• Experience is the starting point for learning and improved 
understanding. 

• Context determines meaning as interpreted and constructed by 
individuals. 

• Relevant contexts are often broad and multi-faceted; effective 
learning integrates multiple aspects of new contexts with existing 
knowledge and understanding. 

• Effective learning begins from a position of humility and uncertainty 
– that is to say, with an admission (explicit or tacit) of not knowing or 
understanding. 

 These various summaries indicate a high degree of agreement among 
educational researchers about the implications of research on learning for the 
design of instruction. Why, then, is there so little application of these findings 
beyond the involved research groups to improve learning and instruction 
systemically? Moreover, why have we not seen systematic benefits accrue to 
society from improved learning and instruction? Perhaps educational practice is not 
as evidence-based as one would like to imagine. 

ASSESSING LEARNING IN COMPLEX DOMAINSi

I believe the answer to the previous questions about apparent lack of progress in 
reaping the benefits of research on learning and instruction are a result of a failure 
to deal effectively at many levels with educational systems. Indeed, it is the 
inability to conceptualize education as involving complex and dynamic systems 
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that inhibits progress. In this section, I shall provide an overview of research 
related to learning in and about complex systems and focus in particular on an 
assessment methodology that is pertinent to evidence-based decision making in 
learning and instruction. 
 Systems-based approaches to learning and instruction have been around for 
more than fifty years and have recently been integrated into assessment and 
evaluation (Seel, 2003; Spector & Koszalka, 2004). Findings from systems-
oriented research on learning and instruction in complex, ill-structured problem 
domains suggest that learners often fail to comprehend the nature of a system – 
how various factors are interrelated and how a change in one part of the system can 
dramatically affect another part of the system (Dörner, 1996; Spector & Anderson, 
2000). A number of instructional approaches already mentioned address this 
deficiency directly, including problem-centered learning (Merrill, 2002) and 
variations such as model-centered learning (Seel, 2003) and model-facilitated 
learning (Milrad et al., 2002). 
 A common theme in systems-based approaches is the notion that the full 
complexity of a problem situation should eventually be presented to the learner, 
and that helping the learner manage that complexity by gradually introducing 
additional problem factors can contribute to effective learning. Challenging 
problems typically involve a complex system, and instruction should be aimed not 
only at a specific facet of the problem but also at the larger system so as to help 
learners locate problems in their naturally larger contexts; this has been called a 
holistic approach (Spector & Anderson, 2000) or a whole-task approach (van 
Merriënboer, 1997). Methods to facilitate understanding in such complex contexts 
include presenting multiple representations of problem situations (Spiro, Feltovich, 
Jacobson, & Coulson, 1991), interactions with simulations of complex systems 
(Milrad et al., 2002), and partially worked examples (van Merriënboer, 1997). 
Learner-constructed problem representations of the type to be described below 
have implications for instruction as well as for assessment. 
 The integration of technology in teaching and learning can be closely linked to 
systems-based approaches making use of such technologies as powerful and 
affordable computers, broadband networks, wireless technologies, more powerful 
and accessible software systems, distributed learning environments, and so on. 
Educational technologies provide many valuable affordances for problem-centered 
instructional approaches. The learning technology paradigm has appropriately 
shifted from structured learning from computers to one better characterized as 
learning linked with instructional uses of technology, or learning with computers 
(Lowyck & Elen, 2004). The emphasis is on (a) viewing technology as an ongoing 
part of change and innovation, and, (b) using technology to support higher-order 
learning in more complex and less well-defined domains (Jonassen, 2006; Spector 
& Anderson, 2000). The latter is a concern for many educational researchers (see, 
for example, Project Zero at Harvard University; http://pzweb.harvard.edu/).  
 Learning environments and instructional systems are properly viewed as parts of 
larger systems rather than as isolated places where learning might occur. Moreover, 
learning takes place in more dynamic ways than was true in the teacher-led 
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paradigm of earlier generations. Many more learning activities are made possible 
by technology and this further complicates instructional design – that is to say, 
determining how, when, which, and why particular learning activities promote 
improved understanding. Lessons learned in previous generations of educational 
technology should be taken into account. For example, simply putting sophisticated 
technologies into a learning environment is not likely to be either efficient or 
effective. Previous studies have focused on the effects of a particular technology on 
attitudes, motivation, and simple knowledge tests. Such studies perpetuate a 
wrongheaded debate about the educational efficacy of media (Clark, 1994; Kozma, 
1994). What should be studied is the impact on learning in terms of improvements 
in student inquiry processes and other higher order aspects of learning directly 
relevant to understanding challenging and complex subject matter (Lowyck, et al., 
2003; Spector & Anderson, 2000). 
 To demonstrate that specific instructional approaches and educational 
technologies are effective in improving complex problem-solving skills, a 
methodology to determine higher-order learning outcomes appropriate for such 
problems is required. A pilot test of such a methodology was demonstrated and 
discussed at the 2000 International System Dynamics Conference in Bergen, 
Norway (Christensen, Spector, Siuntine, & McCormach, 2000). A similar 
methodology developed in Germany has shown promise (Seel, Al-Diban, & 
Blumschein, 2000). General findings of a one-year National Science Foundation 
(NSF) study involving this modeling assessment methodology are discussed next. 
 The NSF project entitled “The DEEP Methodology for Assessing Learning in 
Complex Domains” (see Spector & Koszalka, 2004 for detailed findings; only 
high-level summaries are reported here) examined the use of annotated problem 
representations to determine relative levels of expertise in biology, engineering and 
medicine. Complementary studies with similar results have been reported in the 
literature (Seel et al., 2000; Stoyanova & Kommers, 2002; Taricani & Clariana, 
2006). The DEEP study involved the selection of two representative problem 
scenarios for each of three complex problem-solving domains (biology, 
engineering and medicine). Subjects included both expert and non-expert 
respondents; they were provided with a problem scenario and asked to indicate 
what they thought would be relevant to a solution. Subjects were asked to 
document these items, providing a short description of each item along with a brief 
explanation of how and why it was relevant. Subjects were asked to indicate and 
document assumptions about the problem situation that they were making (initially 
and again at the end of the activity). Subjects were asked to develop the 
representation of a solution approach – but not a solution. Required parts of this 
representation included: (a) key facts and factors influencing the problem situation; 
(b) documentation of each factor – for example, how it influences the problem; (c) 
a graphical representation of the problem situation that linked key factors (see 
http://deep.lsi.fsu.edu/DMVS/jsp/index.htm for online access to the DEEP tool); 
(d) annotations on the graphical representation (descriptions of each link and each 
factor); (e) a solution approach based on the representation already provided, 
including additional information that would be required to fully specify a solution, 
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and (f) an indication of other possible solution approaches (very few of the 
respondents provided this last item). 
 Findings suggest that the DEEP method can be used to predict performance and 
relative levels of expertise in some cases (Spector & Koszalka, 2004; Spector, 
Dennen, & Koszalka, 2005). Expert representations were noticeably different from 
those of non-experts, although there were also differences among expert responses. 
There was much variation in non-expert responses. Differences occurred at three 
levels of analysis (surface, structure, semantic). In general, experts tended to 
identify more relationships among factors and generally said more about factors 
and links. In most cases, experts tended to identify more causal relationships as 
opposed to other types of relationships, although this was not the case with expert 
medical diagnosticians. As it happens, expert medical diagnosticians are very 
familiar with standard diagnostic procedures and used that knowledge to quickly 
develop a representation reflecting the standard diagnostic procedure; non-experts 
(medical school interns in this case) had extensive knowledge of the human body 
from recent coursework, and they used that knowledge to reason through a 
sequence likely to be result in a successful diagnosis.  In other words, expert 
diagnosticians made use of a schema when reacting to the problem situation, 
whereas non-expert diagnosticians had to construct a causal mental representation 
of the problem. In the other domains, experts tended to reason more in terms of 
causal relationships than did novices. This variation across problem domains 
indicates that the DEEP methodology is sensitive to and useful in identifying such 
differences  
 In all three problem domains, experts and non-experts exhibited noticeable 
differences in identifying key or critical nodes identified. Experts identified similar 
critical nodes (the most inter-connected nodes), whereas the critical nodes 
identified by non-experts differed significantly from those experts and also from 
each other. For example, in response to one of the medical scenarios, none of the 
experts cited stress as a critical factor yet some non-experts did. Expert medical 
diagnosis was driven by evidence based on tests as the most critical factor; experts 
also mentioned follow-up visits and tests, while non-experts did not mention these 
things. In short, differences in the responses of experts and non-experts were 
evident at the surface and structural level (critical nodes) and also at the semantic 
level (what they said about specific nodes). 
 In the DEEP study, there was no opportunity to examine changes in problem 
representations over time or through a sequence of instructional sequence or period 
of sustained practice. The goals were to determine (a) if the annotated problem 
representation methodology was suitable for use in multiple domains, (b) if it 
would show differences in expert and non-expert responses, and (c) whether or not 
it could provide a basis for assessing relative level of expertise. These goals were 
achieved. The next steps are to investigate the utility of DEEP in assessing changes 
in how individuals and groups represent problems and to integrate the method into 
personalized feedback for problem solving activities (Spector, Dennen, & 
Koszalka, 2005). This implies using the method with both individuals and small 
groups before, during and after instructional sequences and periods of deliberate 
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practice. It is our hope that the DEEP method can be used to assess team problem 
solving and predict team performance on complex cognitive tasks as this is a much 
under-explored area of research with significant societal implications. DEEP has 
the potential to become the basis for personalized and high-level feedback to 
individuals and groups, and may improve the development of metacognitive skills 
and self-regulation.  
 The DEEP methodology has the potential to scale up for use in educational and 
performance settings involving many individuals, whereas the more traditional 
think-aloud protocol analysis methodology is suitable only for examining a small 
number of individuals in order to investigate particular hypotheses with regard to 
learning and performance. The DEEP methodology has the additional advantage of 
being easy to learn and implement, which makes it potentially suitable for 
classroom and workplace use. Further refinements of the methodology and the 
associated tool, including extensions for use with small groups and problem-
solving teams, are required. Moreover, investigations of more problems in more 
domains with persons at different levels of knowledge and skill are required in 
order to develop more precise and reliable assessment metrics. Finally, the DEEP 
tool is useful in revealing differences in types of problems and how they are 
perceived by different problem solvers. Such knowledge is relevant to 
understanding the development of problem solving skills in individuals and teams. 
 Variations and precursors of this methodology have been effectively 
demonstrated in other domains (see, for example, Dummer & Ifenthaler, 2005; 
Herl et al., 1999; Novak, 1998; Schvaneveldt, 1990). In addition to measures 
associated with DEEP and other assessment tools, it is possible to collect relatively 
reliable data, such as quantitative measures of measures of similarity to expert 
responses (e.g., presence/absence of salient features and their location in a concept 
map). By themselves, these do not provide insight into the progressive 
development of expertise or improvement in higher-order reasoning, especially in 
complex, ill-structured problem-solving domains, but they may predict 
performance on many types of complex problems. It is also possible to collect and 
analyze qualitative data, including responses to problem scenarios and think-aloud 
protocols. However, these are time-intensive and costly and, as a consequence, 
they are hardly ever used when a laboratory effort scales up to full-scale 
implementation; such qualitative measures are simply not useful for assessing large 
numbers of individuals or evaluating programs. The promise of DEEP (Spector & 
Koszalka, 2004) and other automated tools (Dummer & Ifenthaler, 2005) is that 
changes in individuals and teams can be assessed in real-time and through a 
sequence of instruction or period of practice.  
 In DEEP, the learner or group is asked to construct an annotated problem 
representation to determine how that learner or learning group is thinking about a 
particular problem situation. Once the learner or group constructs the diagram, it 
can be compared with one created by an expert practitioner and immediate 
feedback provided to the learner that is specific to that learner’s representation. As 
these problem scenarios are accumulated, it is possible to determine if learner 
responses increasingly reflect expert-like conceptualizations (factors, complexity 
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NOTES 

 
 

of interactions among factors, and explanations of relationships). In sum, it is 
possible to use the DEEP methodology to predict how problem representations will 
develop and change in individuals and groups. This is consistent with other 
researchers who have studied the progressive development of mental models 
(Dummer & Ifenthaler, 2005; Seel, 2003). 

TO GO WHERE NONE HAVE GONE 

The goal of instruction is to facilitate learning – to help people. The goal of 
learning, especially that associated with schools, colleges and formal training, is to 
help people by helping them to improve performance and understanding. The goal 
of improving performance and understanding is to enjoy better lives in some way. 
As Suppes (1978) noted, there has been some concern that the links in this chain 
have not been well connected. Indeed, one could conclude that things have not 
changed much since 1978 nor from that beginning in which there was so much 
chaos and confusion. We have wandered about in the wilderness of new 
technologies and paradigms for learning and instruction for more than a generation. 
We have had some interesting and wonderful adventures. However, the real work 
of systematically and systemically improving learning and instruction – of learning 
to use technology effectively to improve learning and instruction – has only just 
begun. Perhaps our students will be able to go where we and others have failed to 
go – into the hearts and minds of people who need to learn to share limited 
resources, tolerate different perspectives, and become better neighbors. Perhaps our 
students will turn our adventures into advances. 

i The work reported in this section began at the University of Bergen and was continued at Syracuse 
University as part of a National Science Foundation Project entitled “The DEEP Methodology for 
Assessing Learning in Complex Domains.” 
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